طبقه‌بندی دمایی ایستگاه‌های هواشناسی کشور با استفاده از خوشه‌بندی فازی و شبکه عصبی مصنوعی کوهونن

Authors

  • اسماعیل اسدی استادیار گروه مهندسی آب دانشکده کشاورزی، دانشگاه تبریز
  • سرور پوربابک کارشناس ارشد مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تبریز
  • محمدحسن فاضلی فرد کارشناس ارشد رشته کشاورزی گرایش منابع آب، دانشکده کشاورزی، دانشگاه تبریز
Abstract:

چکیده طبقه­­بندی ایستگاه­های هواشناسی موجب اختصاص حجم زیادی از اطلاعات به چند دسته متجانس کوچک­تر، سهولت استفاده در مدل­سازی و هم­چنین کمک شایانی به گسترش اطلاعات نقطه­ای به اطلاعات منطقه­ای برای نقاط فاقد آمار می­نماید. در این تحقیق 112 ایستگاه هواشناسی پس از بررسی­های اولیه از بین تمام ایستگاه­های سینوپتیک کشور انتخاب و سپس با استفاده از خوشه­بندی فازی و شبکه عصبی مصنوعی کوهونن طبقه­بندی دمائی آنها مورد بررسی قرار گرفت. میانگین دمای سالانه، طول جغرافیایی، عرض جغرافیایی و ارتفاع ایستگاه­ها به­عنوان پارامترهای ورودی معیارهای طبقه­بندی در نظر گرفته شدند. تعداد بهینه خوشه­ها با استفاده از شاخص دیویس-بولدین، محاسبه و ایستگاه­های هر خوشه به تفکیک مشخص و با کمک سیستم اطلاعات جغرافیائی روی نقشه مشخص گردید. در ادامه از پهنه­بندی اقلیمی کشور بر اساس روش دمارتن جهت ارزیابی دقت هر دو روش استفاده گردید. هر چند نتایج حاکی از دقت قابل قبول هر دو روش می­باشد، لیکن خوشه­بندی فازی تا حدودی نسبت به شبکه عصبی کوهونن انطباق بهتری را با پهنه­های اقلیمی حاصل از روش دمارتن نشان می­دهد

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی

نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدم­وجود شتابنگاشت­های مناسب در مناطق مختلف، تولید شتابنگاشت­های مصنوعی سازگار با طیف طرح را ضروری می­سازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی  برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...

full text

پیش‌بینی شاخص کیفیت هوا برمبنای متغیرهای هواشناسی و مولفه‌های خودهمبسته با استفاده از شبکه عصبی مصنوعی

Background: Air Quality Index (AQI) quantifies the relationship between air quality and the level of health. The value of AQI may be predicted using neural network model for a day in advance, based on the meteorological variables and autocorrelation behavior of the index in Kermanshah, a city in western Iran. Methods: Data for air pollution and meteorological variables, collected during thre...

full text

تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

full text

تولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی

نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدم­وجود شتابنگاشت­های مناسب در مناطق مختلف، تولید شتابنگاشت­های مصنوعی سازگار با طیف طرح را ضروری می­سازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی  برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...

full text

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

full text

مدل‌سازی آبشستگی اطراف آبشکن در قوس‌ها با استفاده از منطق فازی و شبکه عصبی مصنوعی

آبشکن سازه­ای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویه­ای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل  احداث می­شود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن می­باشد. لذا مدل­سازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار می­باشد. در این تحقیق د...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 55

pages  45- 63

publication date 2016-05-04

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023